Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,3-Benzodioxol-2-one

Richard Betz and Peter Klüfers*

Department Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
Correspondence e-mail: kluef@cup.uni-muenchen.de

Received 9 November 2007; accepted 12 November 2007

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.030 ; w R$ factor $=0.072$; data-to-parameter ratio $=13.6$.

The title compound, $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}$, is the first cyclic carbonate of an aromatic diol whose structure has been elucidated by means of single-crystal X-ray analysis. The molecule possesses crystallographic twofold rotation symmetry and non-crystallographic $C_{2 v}$ symmetry. The $\mathrm{C}-\mathrm{O}$ single bonds are slightly longer than those in comparable cyclic carbonates derived from aliphatic vicinal diols. The crystal structure is built up from columns of π-stacked molecules; the inversion-related molecules are stacked along the b axis, with the centroids of the benzene rings separated by 3.631 (1) \AA.

Related literature

For the synthesis of an asymmetric spiro orthocarbonate, see: Komatsu et al. (1992). For related structures, see: Betz et al. (2007); Darensbourg et al. (2003).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}$
$M_{r}=136.10$
Monoclinic, $C 2 / c$
$\beta=116.053(16)^{\circ}$
$V=570.1$ (2) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation

Data collection
Oxford Diffraction XCalibur diffractometer
Absorption correction: analytical
(de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.982, T_{\text {max }}=0.994$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.072$
$S=1.02$
654 reflections
48 parameters
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
$0.18 \times 0.07 \times 0.06 \mathrm{~mm}$

1617 measured reflections 654 independent reflections 492 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

Only H-atom displacement parameters refined
$\Delta \rho_{\max }=0.16 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3}$

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors thank Sandra Albrecht and Dr Peter Mayer for professional support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2515).

References

Betz, R., Klüfers, P. \& Reichvilser, M. M. (2007). Acta Cryst. E63, o3890.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Darensbourg, D. J., Lewis, S. J., Rodgers, J. L. \& Yarbrough, J. C. (2003). Inorg. Chem. 42, 581-589.
Komatsu, S., Takata, T. \& Endo, T. (1992). Macromolecules, 25, 7286-7293.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Versions 1.171.27p5 beta. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4713 [doi:10.1107/S1600536807058096]

1,3-Benzodioxol-2-one

R. Betz and P. Klüfers

Comment

The title compound, (I), was accidentally prepared on the attempted synthesis of an asymmetric spiro-orthocarbonate.

The molecule of (I) (Fig. 1) possesses crystallographic twofold symmetry, with atoms C 1 and O 1 lying on the twofold rotation axis. The $\mathrm{C} 1=\mathrm{O} 1$ bond length $[1.191(2) \AA]$ is comparable to the corresponding distance observed in similar cyclic carbonates derived from aliphatic vicinal diols, but the $\mathrm{C} 1-\mathrm{O} 2[1.3660(13) \AA]$ distance between the carbonyl C atom and the diol O atom is found to be slightly longer (Darensbourg et al., 2003; Betz et al., 2007). The five-membered 1,3-dioxol2 -one ring, which contains the carbonate group, is essentially planar and as a result the molecule as a whole is planar.

In the crystal structure, the inversion-related molecules are stacked along the b axis in such a way that the centroids of the benzene rings are separated by 3.631 (1) \AA [perpendicular distance $3.370 \AA$], indicating significant π - π interactions (Figs. 2,3,4)

Experimental

The title compound was obtained accidentally on the attempted synthesis of an asymmetric spiro orthocarbonate according to a published procedure (Komatsu et al., 1992) by reacting 2,2-dichlorobenzo[1.3]dioxole ($10 \mathrm{mmol}, 1.91 \mathrm{~g}$) and 1-(hy-droxymethyl)-cyclobutane-1-ol $(10 \mathrm{mmol}, 1.02 \mathrm{~g})$ in the presence of pyridine $(20 \mathrm{mmol}, 1.58 \mathrm{~g})$ in dichloromethane (10 ml). Crystals suitable for X-ray analysis were obtained directly from the crystallized reaction product.

Refinement

All H atoms were located in a difference map and refined as riding on their parent atoms. One common isotropic displacement parameter for all H atoms was refined to 0.025 (3) \AA^{2}.

Figures

Fig. 1. The structure of one molecule of (I), with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level) for non-H atoms.

supplementary materials

Fig. 2. The molecular packing of (I), viewed along [$\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]$.

Fig. 3. The molecular packing of (I), viewed along [llll $\left.\begin{array}{lll}1 & 1\end{array}\right]$.

Fig. 4. The molecular packing of (I), viewed along $\left[\begin{array}{lll}0 & 0 & \overline{1}\end{array}\right]$.

1,3-Benzodioxol-2-one

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}$
$M_{r}=136.10$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=10.224$ (3) \AA
$b=8.9132(14) \AA$
$c=6.9636(14) \AA$
$\beta=116.053(16)^{\circ}$
$V=570.1(2) \AA^{3}$

Data collection

Oxford Diffraction XCalibur
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=100(2) \mathrm{K}$
ω-scans
Absorption correction: analytical
(de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.982, T_{\text {max }}=0.994$
1617 measured reflections
654 independent reflections
492 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.072$
$S=1.03$
654 reflections
48 parameters

$$
\begin{aligned}
& Z=4 \\
& F_{000}=280 \\
& D_{\mathrm{x}}=1.586 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo Ka radiation } \\
& \lambda=0.71073 \AA \\
& \theta=3.8-27.5^{\circ} \\
& \mu=0.13 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Rod, colourless } \\
& 0.18 \times 0.07 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

$$
R_{\mathrm{int}}=0.025
$$

$$
\theta_{\max }=27.5^{\circ}
$$

$$
\theta_{\min }=3.8^{\circ}
$$

$$
h=-11 \rightarrow 13
$$

$$
k=-11 \rightarrow 9
$$

$$
l=-9 \rightarrow 8
$$

Standard reflections: ?;
every? reflections
intensity decay: ?

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
Only H-atom displacement parameters refined

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0381 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.29$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})
x
y
z

$$
U_{\mathrm{iso}} * / U_{\mathrm{eq}}
$$

supplementary materials

O1	0.0000	$0.44258(14)$	0.2500	$0.0311(4)$
O2	$0.11806(9)$	$0.22115(9)$	$0.28638(13)$	$0.0204(3)$
C1	0.0000	$0.3090(2)$	0.2500	$0.0213(4)$
C2	$0.07241(13)$	$0.07251(13)$	$0.27193(18)$	$0.0160(3)$
C3	$0.15072(14)$	$-0.05641(13)$	$0.29563(19)$	$0.0197(3)$
H3	0.2508	-0.0554	0.3260	$0.025(3)^{*}$
C4	$0.07345(13)$	$-0.18920(14)$	$0.27216(19)$	$0.0209(3)$
H4	0.1221	-0.2823	0.2867	$0.025(3)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0363(8)$	$0.0159(8)$	$0.0426(8)$	0.000	$0.0187(7)$	0.000
O2	$0.0180(5)$	$0.0165(5)$	$0.0274(5)$	$-0.0010(4)$	$0.0107(4)$	$0.0002(4)$
C1	$0.0212(10)$	$0.0224(11)$	$0.0207(9)$	0.000	$0.0097(8)$	0.000
C2	$0.0193(6)$	$0.0152(7)$	$0.0144(5)$	$-0.0033(5)$	$0.0083(5)$	$-0.0009(4)$
C3	$0.0174(6)$	$0.0221(7)$	$0.0200(6)$	$0.0030(5)$	$0.0087(5)$	$0.0000(5)$
C4	$0.0251(7)$	$0.0166(7)$	$0.0221(6)$	$0.0038(5)$	$0.0114(6)$	$0.0008(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 1$	$1.191(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.3922(17)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.3660(13)$	$\mathrm{C} 3-\mathrm{H} 3$	0.95
$\mathrm{O} 2-\mathrm{C} 2$	$1.3935(15)$	$\mathrm{C} 4-\mathrm{C} 4^{\mathrm{i}}$	$1.394(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.3684(17)$	$\mathrm{C} 4-\mathrm{H} 4$	0.95
$\mathrm{C} 2-\mathrm{C} 2^{\mathrm{i}}$	$1.374(2)$		$115.34(12)$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2$	$106.92(10)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	122.3
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$124.98(7)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	122.3
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 2$	$110.04(15)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	$121.77(7)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 2^{\mathrm{i}}$	$122.89(7)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4$	119.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 2$	$129.05(11)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.1
$\mathrm{C} 2-\mathrm{C} 2-\mathrm{O} 2$	$\mathrm{C} 4-\mathrm{C} 4-\mathrm{H} 4$		
Symmetry codes: $(\mathrm{i})-x, y,-z+1 / 2$.			

Fig. 1

Fig. 2

Fig. 3

Fig. 4

